

FSA Integration Partner
United States Department of Education

Federal Student Aid

Enterprise Application Integration (EAI)

SAIG – COD

Common and Legacy Record Schools
Interface

Transformation

Internal Design Document

Document Reference Name: SAIG_COD_MSG_TRANSFORM_IDD

September 16, 2003

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 2 of 27

Document Change Control
Date Author Version Change Reference

9/16/2003 Scott Van Velsor 1.0 Initial Document Creation

Approval
Created By:

Scott Van Velsor

202.962.0771 Creation Date 9/16/2003

Approved By:

TBD

TBD Approval Date: TBD

Tech Sign Off:

TBD

TBD Sign Off Date: TBD

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 3 of 27

Overview
This section describes the entire COD file submission/response process to provide a general understanding of the
COD transformation program and how it fits into the process. The following diagram illustrates the process at a
high level:

Steps in the process:

1. The COD front-end system at TSYS accepts student loan Origination and Disbursement data from schools
(via SAIG Mailbox) in two formats:

• XML “Common Record” format from full participant schools
• Legacy “Flat File” format from phase-in schools (schools that have not yet converted their

systems to support the new XML format)
Both the XML and the Legacy file submissions are wrapped with SAIG headers and trailers, which are
used in the SAIG mailbox system.

2. COD processes the data and sends out all of its responses in XML format. In other words, responses to
both XML and Flat Files come back in XML. The XML file that it sends conforms to the internal version
of the schema, which contains additional fields used by the COD transform program for constructing the
final output (discussed in Step 3).

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 4 of 27

3. The COD transformation program processes the COD front-end acknowledgement output before it gets
placed in the SAIG mailbox system and is returned to the schools. All COD front-end XML output goes
through the EAI Bus before it is returned to schools via the SAIG mailbox system. The type of processing
performed on the file depends on the type of response that is required.

4. a) For XML submissions and responses from full-participant schools, the COD XML output is read,

internal tags are stripped, and the SAIG headers and trailers are built around the XML

b) For Legacy submissions and acknowledgements from phase-in schools, the COD XML output is
converted into a flat file acknowledgement format, the type of which is dependent on the message class

The COD transformation program is located on the EAI “Bus” servers. It is written in Java, and uses XML
configuration files. In production, there is a mirror instance on each of the Bus machines. Each instance operates
independently. Routing of traffic and load balancing is dependent on the Data Integrator (DI) messaging
infrastructure, which actually moves the files from point to point.

Each COD transformation process is in fact a separate UNIX process on the bus server. That is, a separate JVM is
launched on the box every time a transformation process occurs. This approach essentially eliminates restart and
recovery type concerns – there is no “listener” process or anything similar that needs to be up and running for the
transformation functionality to be available.

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 5 of 27

The Transform Process Flow
This section details the COD transformation process flow and the major components of the transformation
module. The major components are detailed in the following sections.

ResponseProcessor.class

RespScanner.class
scans for the document-level

cached fields

COD XM L
 File

Data Integrator Script
receives file and kicks off

codXform .sh

codXform.sh
instatiates the JVM with the

tranform ation code

RespPreScanner.class
determ ines what type of output

file needs to be built

ConfigLoader.class
loads the appropriate output

template and edit code
m apping files for the output file

type

based on output
file type

RespTransformerCR.class
scans for the docum ent-level

cached fields

RespTransformerDLC.class
scans for the docum ent-level

cached fields

RespTransformer.class
scans for the document-

level cached fields

move file
depending on

return code

successfuly
converted

file

error file -
message

class

error file -
transform

issue

return code on
transform status

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 6 of 27

Class Hierarchy
This section details the major COD transformation components and a high-level functional description of each
component.

Component Name Location Description
transform.jar $EAIDIR/bin All of the executable Java .class files are

packaged together in this JAR file for a
consolidated deployment of the executable
code.

ConfigLoader.class part of transform.jar Responsible for processing the
configuration files and creating the search-
and-build data structures.

EmptyHandler.class part of transform.jar A RespSAXHandler-based class that
doesn’t process any events. Used as a
placeholder when an XML file has been
processed as much as necessary.

FFRowField.class part of transform.jar A data structure that models a field in a flat
file row.

FFRowTemplate.class part of transform.jar A data structure that models a flat file row.
FFTemplateMgr.class part of transform.jar A singleton class that holds references to

the flat file templates and the search-and-
build data structures.

FormatUtils.class part of transform.jar A utility class that holds all of the
formatting functions required to format
XML data to the corresponding flat file
values.

ResponseProcessor.class part of transform.jar The main class for the application, contains
the main() function for the program entry
point.

RespPreScanner.class part of transform.jar A RespSAXHandler-based class that
handles the pre-scan, which is simply
figuring out what type of output document
needs to be produced (what template to
load).

RespSAXHandler.class part of transform.jar The base class for classes that have to parse
XML for this application.

RespScanner.class part of transform.jar A RespSAXHandler-based class that
handles parsing the XML document,
looking for cached fields and calculating
count/aggregate fields.

RespTransformer.class part of transform.jar A RespSAXHandler-based class that
handles conversion of COD XML output to
all legacy responses (besides DL Change).

RespTransformerCR.class part of transform.jar A RespSAXHandler-based class that
handles conversion of COD XML output to

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 7 of 27

Common Records (with SAIG headers and
trailers).

RespTransformerDLC.class part of transform.jar A RespSAXHandler-based class that
handles conversion of COD XML output to
legacy DL Change responses.

Transformer.class part of transform.jar An interface implemented by the
RespSAXHandler (and the
RespTransformer, RespTransformerCR,
RespTransformerDLC, in turn), to allow
for polymorphism across these classes on
the transform method.

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 8 of 27

Configuration Files
This section describes in detail all configuration files used by the transformation program for all award types and
award years. The legacy record layouts change from award year to award year, to accommodate for these
changes, the configuration files that are award year dependent are suffixed with “_0x0x.xml” (e.g., _0203 for the
02-03 award year).

Component Name Location Description
x_ResponseTemplates.xml $EAIDIR/config/transform A mapping of message class /

batch type pairs to file types.
This is the main file used when
identifying what type of output
file needs to be created.

x_LoggingConfig.xml $EAIDIR/config/transform A file containing configuration
information for the logging
framework.

x_cr_response.xml $EAIDIR/config/transform The mapping template file used
for Common Record output files
(Note: award year independent)

x_dl_batchEditMappings_0x0x
.xml

$EAIDIR/config/transform The configuration file for COD-
DL Legacy batch edit code
mappings.

x_dl_booking_notif_0x0x.xml $EAIDIR/config/transform The mapping template file used
for DL Booking Notification
legacy output files.

x_dl_change_ack_0x0x.xml $EAIDIR/config/transform The mapping template file used
for DL change file legacy output
files.

x_dl_changeCodeMappings_0
x0x.xml

$EAIDIR/config/transform The configuration file for COD-
DL Legacy Sub/Unsub/PLUS
change file code mappings.

x_dl_changeEditMappings_0x
0x.xml

$EAIDIR/config/transform The configuration file for COD-
DL Legacy Sub/Unsub/PLUS
change file edit code mappings.

x_dl_creditdec_ack_0x0x.xml $EAIDIR/config/transform The mapping template file used
for DL Credit Decision legacy
output files.

x_dl_plusOrig_ack_0x0x.xml $EAIDIR/config/transform The mapping template file used
for DL PLUS origination
acknowledgement legacy output
files.

x_dl_plusOrigEditMappings_0
x0x.xml

$EAIDIR/config/transform The configuration file for COD-
DL Legacy PLUS origination edit
code mappings.

x_dl_pmttoserv_notif_0x0x.xm $EAIDIR/config/transform The mapping template file used

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 9 of 27

l for DL Payment to Servicing
legacy output files.

x_dl_pnote_ack_0x0x.xml $EAIDIR/config/transform The mapping template file used
for DL Unsolicited Prom Note
legacy output files.

x_dl_subunOrig_ack_0x0x.xml $EAIDIR/config/transform The mapping template file used
for DL Sub/Unsub origination
acknowledgment legacy output
files.

x_dl_subunOrigEditMappings
_0x0x.xml

$EAIDIR/config/transform The configuration file for COD-
DL Legacy Sub/Unsub
origination edit code mappings.

x_dl_supDisb_ack_0x0x.xml $EAIDIR/config/transform The mapping template file used
for DL Sub/Unsub/PLUS
disbursement acknowledgement
legacy output files.

x_dl_supDisbEditMappings_0
x0x.xml

$EAIDIR/config/transform The configuration file for COD-
DL Legacy disbursement edit
code mappings.

x_pell_batchEditMappings_0x
0x.xml

$EAIDIR/config/transform The configuration file for COD-
Pell Legacy batch edit code
mappings.

x_pell_disb_ack_0x0x.xml $EAIDIR/config/transform The mapping template file used
for Pell disbursement
acknowledgement legacy output
files.

x_pell_disbEditMappings_0x0
x.xml

$EAIDIR/config/transform The configuration file for COD-
Pell Legacy disbursement edit
code mappings.

x_pell_orig_ack_0x0x.xml $EAIDIR/config/transform The mapping template file used
for Pell origination
acknowledgement legacy output
files.

x_pell_origEditMappings_0x0x
.xml

$EAIDIR/config/transform The configuration file for COD-
Pell Legacy origination edit code
mappings.

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 10 of 27

Log Files
Component Name Location Description
transformation.log $EAIDIR/logfiles Status and error log entries for the

transformation process are continually
written to this log file as it executes.

Program Dependencies
This section lists the dependencies for the transformation program to function properly.

Dependencies Location Description
$EAIDIR Set for the mqm

user.
The root directory of the installed COD
EAI code. It is currently
/export/home/mqm/eaicodr1

Sun JVM N/A. 1.3.1_02
xerces.jar $EAIDIR/lib This library provides support for XML

processing via the SAX API. The Common
Record XML file is processed with SAX.
Current version is 1.4.4.

jdom.jar $EAIDIR/lib This library provides support for XML
processing via the JDOM API. The
configuration files are processed with
JDOM. Current version is b7.

protomatter-1.1.5.jar $EAIDIR/lib This library provides support for
application logging. Current version is
1.1.5.

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 11 of 27

Transformation directory structure
This section lists the directory structure that is required for the transformation application to operate.

Production Directory Structure Dev/Test Directory Structure Description
$EAIDIR/config/transform

<home>/transform/config/transform This is the repository for all
transformation related
configuration files for testing.

$EAIDIR /logfiles

<home>/logfiles The transformation log file is
written to this directory

/export/data/mqm <home>/xDataFiles The input data files are moved to
this directory for processing

/export/data/mqm/saig/errors <home>/xErrorFiles The files that resulted in a
transformation error are moved to
this directory

N/A <home>/xPendingFiles The files that resulted in an expect
failure during transformation
processing are moved to this
directory

/export/data/mqm/saig/proc <home>/xProcessedFiles The input data files that are
successfully transformed are moved
to this directory.

/export/data/mqm/saig <home>/xOutputFiles The post-transform files that are
successfully transformed are moved
to this directory.

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 12 of 27

EAI - COD Transformation Interface
This section describes in detail the interface between the transformation program and the EAI infrastructure. The
COD transformation program is located on the EAI “Bus” servers. The transformation program is instantiated
through Data Integrator (DI) scripts on the arrival of COD school files. Data Integrator enables bulk file transfer
between applications/systems using the MQSeries infrastructure. The DI script deployed on the EAI Bus to
initiate the transformation program is detailed in the table below.

Dependencies Location Description
codXform.sh $EAIDIR/scripts This script takes the input parameters and

calls the transformation java code. It uses
the $EAIDIR variable to determine the
location of the executable .jar files. The
input parameters to this script are detailed
in order below:

1. The full path to the input file
2. The full path to the output file
3. The full path to the pending file

directory
4. The full path to the processed file

directory
5. The full path to the error file

directory

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 13 of 27

Error Handling
The COD transform returns a status code that indicates the process status to the script that called it. Depending
on what happened, it will return one of three codes:

• Status code 0: normal, successful processing. The complete transformed file has been created, with the
name and location specified in the initial arguments to the script (see description of codXform.sh above,
under “Scripts”). The original input (COD XML output) file is copied to the processed file directory as
specified in the arguments to codXform.sh.

• Status code 100: the process was in error. The message class / batch type of the COD output file did not
correspond to any known combinations; therefore the transformed file type to create could not be
determined. The original input (COD XML output) file has the error message appended to it, and is
copied to the error file directory as specified in the arguments to codXform.sh (see description of
codXform.sh above, under “Scripts”).

• Status code 200: the process was in error. This error condition is anything but the one described for the
100 code. Examples of 200 error code conditions are:

o Data was too long/short for field
o Data was missing for a required field
o XML was malformed and could not be parsed

The original input (COD XML output) file has the error message appended to it, and is copied to the error
file directory as specified in the arguments to codXform.sh (see description of codXform.sh above, under
“Scripts”).

Currently, the Data Integrator script that calls the COD transformation program will then route files depending
on the status code:

• Status code 0: route the transformed output file to the SAIG mailboxes for delivery to schools
• Status code 100: route the COD XML (pre-transformed) output file with error messages to the “Bad

message class” GDG <CPQ2396.INH.GP00.ERTOBUS(+1)> at COD for correction
• Status code 200: route the COD XML (pre-transformed) output file with error messages to the “All other

transform errors” GDG <CPQ2396.GP00.BUS.TRANSERR(+1)> at COD for correction

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 14 of 27

Guidelines for new Transformation Development
This section describes the general guidelines for common COD transformation development to accommodate
potential changes in legacy record layouts, common record schemas, and mapping rules from award year to
award year. The following steps should be followed for common (e.g., future award years) COD transformation
development efforts.

1. Review the EAI mapping documents for the message class and batch type that requires a change.
2. Review the new mapping rules document provided by the COD functional team and update the EAI

mapping document to reflect the required change for the particular award year. Any discrepancies in the
record layout between the EAI mapping document, COD Technical Reference, or COD functional
mapping document would require some research. However, if the issue is still unresolved, it is EAI
team’s responsibility to track down this information. This is a suggested approach:
a. Send an email to the COD/transformation development lead with the record type, AY, program, and

a brief description of the issue. The development lead will serve as the point-of-contact for all COD
mapping related issues.

b. Development lead will update the COD R 2.x mappings Issues Log (X:\CIO\TechArch\EAI Core
Release 3\Interface Partners\COD R2.x\XFORM) with the new issue and send an email to the COD
functional team with the issue.

c. Development lead will distribute the findings to the entire team after the issue is resolved.
3. Create/update the configuration files based on the updated EAI mapping documents
4. Perform all unit tests on the local development environment described in Appendix A – Development

Environment.

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 15 of 27

Appendix A - Development Environment
This section describes the high-level process to create the COD transformation development environment local to
the developer’s workstation. The steps are detailed below:

1) Download and install the Java Development Kit (JDK) most current version 1.3.1_02 from the SUN
website (sun.java.com)

2) Download and install Textpad, this will be a very useful tool for creating test data and verifying test
results.

3) Unzip the XForm zip file that includes:
a. Java source code
b. Libraries
c. Configuration files
d. Transformation program directory structure
e. Batch files to run the transformation program

4) Modify the following batch files to setup the environment variables and classpath:
a. sethome.bat – This batch file sets up your home directory for your transformation program (e.g.,

C:\COD\Development\transform)
b. setcp.bat - This batch file sets up your class path for the transformation program

5) Send an email to the EAI Configuration Lead to obtain the latest version of the following:
a. Transformation configuration files – move these configuration files to \config\transform under

the designated home directory.
b. Transformation source code – move the source (.java) files to \gov\ed\sfa\cod\transform under

the home directory specified in the sethome.bat batch files.
c. transform.jar – move the jar file to directly under the home directory

6) Use FTP to move the files to their local development environment (laptop/desktop)
7) The developers will create/modify the XML configuration files on their local development environment

(laptop/desktop). It is the developer’s responsibility to backup versions of the configuration files during
development. The ‘work-in-progress’ configuration files will be kept on the LAN during development.
However, significant changes to the configuration files can be checked into Clear Case for version control.

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 16 of 27

Appendix B - Test Environment
This section describes the high-level process to create the COD transformation development/test
environment on the Dev EAI Bus server SU35e16 (4.20.15.136) or other Unix server. Developers will have
their own test environment setup under their home directory. All tests performed on the test environment
will be against the same transformation source code. However, each developer has their own set of
configuration files for testing new COD transformation developments to prevent overwriting shared
configuration files. The steps are detailed below:

1) Send an email to the EAI Configuration Lead to obtain the latest version of the COD Xform Test

environment setup files listed in the table below (Refer to Appendix E for detail instructions on how to
use these utility scripts). These files should be transferred via FTP to your home directory (e.g.,
/export/home/userID). Execute the xform_test_env_setup.ksh script to setup the test environment.

Script Name Description
codXform.ksh This script takes the input parameters and calls the

transformation java code. It uses the $EAIDIR variable to
determine the location of the executable .jar files.

codxformB.ksh This script calls codXform.ksh and performs transformation
on each file in the <INPUTDIR> directory.

changetext.ksh This script performs a find and replace of sub-text within
files in a specified directory. The find and replace text are
specified in the changetext.ex.cmd command file.

changetext.ex.cmd This is a command file for the changetext.ksh script. Make
modification to this script to find a specified text and
replacement text in files. For example, %s/<Original
Text>/<Replacement Text>/g

renamefiles.ksh This script renames a file in the specified directory with a ‘.xf’
suffix.

xform_test_env_setup.ksh This script creates the COD transformation dev/test
environment for the developer on the EAI Bus.

chk_diff.ksh This script takes two input parameters <DIR1> and <DIR2>
and performs a diff between the files in the two directories.
This script produce a file with the differences between the
files in the different directories

2) Send an email to the EAI Configuration Lead to obtain the latest version of the following:
a. Transformation configuration files – move these configuration files to \config\transform under

the designated home directory.
3) All unit test conditions must be met before migrating to the test environment on the BUS server (e16) for

Regression Testing.

If the test condition fails, change the configuration file or code as necessary in the development environment and
repeat the process until all test conditions are met.

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 17 of 27

Appendix C - COD Transformation References
This section details the list of EAI and COD documents created through the development and test phase. These
are living documents and should be updated to reflect any requirements, development changes, or testing results.
The deliverable/document name, a high level description, and sample deliverables are detailed in the table
below.

Deliverables/Documents Description Location/Sample documents
Mapping Document The purpose of this

document is to capture the
data mapping between the
internal COD Common
Record schema and the
legacy record layouts. This
document combines the
three references into a
single view:
• COD Technical

Reference document
(PDF)

• COD Functional
Mapping Document
(Excel)

• Transformation
configuration file (XML)

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Legacy
Record\PL\26.06 - Pell Legacy Origination\AY 02-
03\26.06 Pell Legacy Origination 0203 Mapping
Document v01.xls

Unit Test Conditions The purpose of this
document is to list all the
test conditions for a specific
message class and batch
type. These test conditions
are directly linked to the
requirements and includes
three type of processing:
• Normal
• Expected
• Unexpected

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Legacy
Record\PL\26.06 - Pell Legacy Origination\AY 02-
03\26.06 Pell Legacy Origination 0203 Unit Test
Conditions v01.xls

Unit Test Scripts The purpose of this
document is to detail the
steps needed to execute the
specific unit test conditions.

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Legacy
Record\PL\26.06 - Pell Legacy Origination\AY 02-
03\26.06 Pell Legacy Origination 0203 Unit Test
Scripts v01.xls

Gap Analysis of COD Pell
Edit Mapping document

The Pell edit code gap
analysis document captures
the following information
for all award years:

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Edits
Documents\R2.2 Edit Issues.xls

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 18 of 27

• Documents legacy edit
codes that have a
corresponding COD
edit and are translated
by the EAI Bus. This
reflects the
configuration files that
are currently in
production.

• Documents legacy edit
codes that doesn’t have
a corresponding COD
edit and are not
translated by the EAI
Bus.

• Documents
discrepancies between
the functional edit
mapping document
(provided by the COD
functional team) and
what is currently in
production (e.g., new
edit, removed edit, etc).

Gap Analysis of COD
Direct Loan Edit Mapping
document

The Direct Loan edit code
gap analysis document
captures the following
information for all award
years:

• Documents legacy edit

codes that have a
corresponding COD
edit and are translated
by the EAI Bus. This
reflects the
configuration files that
are currently in
production.

• Documents legacy edit
codes that doesn’t have
a corresponding COD
edit and are not
translated by the EAI
Bus.

• Documents

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Edits
Documents\ R2.2 Edit Issues.xls

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 19 of 27

discrepancies between
the functional edit
mapping document
(provided by the COD
functional team) and
what is currently in
production (e.g., new
edit, removed edit, etc).

COD Mapping Rules
documents

The purpose of this
document is NOT to
provide technical detail but
to assist in the articulation
of the legacy elements to the
common record XML tags
as specified by FSA and
other partners during the
requirement-gathering
phase.

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Functional
Team Mapping Docs\2003-
04DirectLoanMappingRuleswith2[1].0Schema12-06-
02ver1.0.xls

COD Bus Edit Business
Rules

This document is written
from the perspective of
translating from a Common
Record edit to a legacy edit.
The purpose of this
document is not to provide
technical detail and
solutions but to assist in the
translation of edits from a
functional perspective.

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Edits
Documents\Updated Edit Mapping Appendix from
FDD (CHANGES TRACKED) EAI VERSION.doc

COD Transformation Test
Plan

This document defines the
EAI Testing Plan for the
Common Origination &
Disbursement (COD)
Transformation program.
This document will capture
all testing phases and
ensure that a sound
framework for testing has
been established.

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Test
Plan\COD_Transformation_Test_Plan_R2.2_v1.0.doc

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 20 of 27

Appendix D - COD Transformation Deliverable Location:
This section lists the location of all transformation deliverables for Release 2.0 in the table below.

Directory/Path Description
\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Common
Record

Common Record transformation deliverables for 02-03
and 03-04 are stored under this directory.

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Legacy
Record\DL

Direct Loan legacy transformation deliverables for 02-03
and 03-04 are stored under this parent directory. This
includes edit codes and message/record mappings.

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Legacy
Record\PL

Pell legacy transformation deliverables for 02-03 and 03-
04 are stored under this parent directory. This includes
edit codes and message/record mappings.

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\COD
Common Record XML Schema

COD Common Record schemas for schools are stored
under this directory.

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Functional
Team Mapping Docs

COD Mapping Rules document for all legacy files are
stored under this directory.

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Functional
Team Mapping Docs\Mapping Document
Discrepancies

COD Mapping document discrepancies for all legacy
files are stored under this directory

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Config Files

Latest versions of COD transformation configuration
files during the development phase are stored under
this directory

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Templates

This directory contains various templates to aid the
development and testing of the COD transformation
module. This includes:
• Direct Loan Header and Trailer Test Data & Expected

Results
• Direct Loan TVWIN Header and Trailer Test Data &

Expected Results
• EAI Transformation Mapping Documents
• Test Conditions and Scripts

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Test Plan

Test plan for COD R 2.2 Transformation development

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD
R2.0\XFORM\Environments

This directory contains the following documents:
• COD-EAI environment configuration
• COD transformation migration checklist
• Other environment related documents

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\Utilities

This directory contains various utilities used to support
the development and testing of R 2.2 COD
Transformation enhancements

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 21 of 27

\\Acdoe-dc1\CIO\TechArch\EAI Core Release
3\Interface Partners\COD R2.2\XFORM\R2.2
Regression Testing

This directory contains the baseline test conditions for
regression testing of R 2.2 COD Transformation
enhancements.

Every COD transformation development of a different message class and batch type follows the same deliverable
package. The AY02-03 Direct Loan legacy record format is used as a example to walk through the directory
structure and deliverables required for future developments on the different message classes and batch types.

Directory Structure Description
…\DL\DL Legacy Origination This is the root directory for the particular message

class and batch type. In this example, Direct Loan
Origination.

…\DL\DL Legacy Origination \AY 02-03 This is the root directory for the particular message
class and batch type for that specific award year. In
this example, 02-03

…\DL\DL Legacy Origination \AY 02-
03\x_dl_subunOrig_ack_0203.xml

The configuration file used for development and
testing is stored under this directory.

…\DL\DL Legacy Origination \AY 02-03\DL Legacy
Sub Unsub Origination Acknowledgement 0203 Unit
Test Conditions.xls

The purpose of this document is to list all the test
conditions for a specific message class and batch type.

…\DL\DL Legacy Origination \AY 02-03\DL Legacy
Sub Unsub Origination Acknowledgement 0203 Unit
Test Scripts

The purpose of this document is to detail the steps
needed to execute the specific unit test conditions.

…\DL\DL Legacy Origination\AY02-03\26.02.02-
03.Template.xml

This is a data template with all the data fields
populated. This template will be used to create all test
data for this particular message type.

…\DL\DL Legacy Origination\AY 02-03\Test
Date\Input*.xml

This is the repository for all the test data created for all
the test conditions

…\DL\DL Legacy Origination\AY 02-03\Test
Date\Output*.xf

This is the repository for the actual results from the
initial execution. If the actual results match with the
expected results, it can be archived as expected results
for regression testing.

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 22 of 27

Appendix E – COD Test Utility Scripts
The following is a listing of the test utilities developed by the EAI team for the purposes of COD Transformation
testing.

Check Differences Utility

This script takes two input parameters <DIR1> and <DIR2> and performs a diff between the files in the
two directories. This script will produce a text file that lists the differences between any files that exists in
each directory with the same name. Identical files will result in a “No Differences Encountered” message.
Before running this script the change text script should be run on both directories that are to be
compared, and any previously existing diff_results.txt files should be erased.

 Usage: chk_diff.ksh <DIR1> <DIR2>

Parameters: <DIR1> - Relative path of a list of files (e.g. actual test results)
 <DIR2> - Relative path of a list of files (e.g. expected test results)

Expected Results: diff_result.txt

This output file lists the differences in the files contained in the two directories.
This output file will be created in the directory <home directory>/transform

Script Location: <home directory>/transform

Change Text Utility

This script will apply the changes detailed in changetext.ex.cmd for all files in the directory <DIR1>. This
script will perform a find-and-replace on each of the files in the directory <DIR1>, the find and replace is
defined by the contents of the changetext.ex.cmd file.

 Usage: changetext.ksh <DIR1>

Parameters: <DIR1> - Relative path of the directory containing the files on which the find-
and-replace operation should take place.

Expected Results: Each of the files within the directory <DIR1> will have undergone a text find-

and-replace operation as defined by the changetext.ex.cmd file.

Script Location: <home directory>/transform

Changetext.ex.cmd The changetext.ksh script enacts the find-and-replace operation that is defined

within the changetext.ex.cmd file. This file may contain any number of find and
replace commands, one on each line, and terminates with a line containing “wq”
to save the changes to the files. Each command in the file should be structured as
follows:

 %s/<Orignal Text>/<Replacement Text>/g

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 23 of 27

 Before running the Check Differences Utility the Change File Utility should
always be run on both sets of data files with the following command lines in the
changetext.ex.cmd file:

 %s/[0123456789]*/#####/g
 wq
 This command will replace the unique “inproc” number with a generic “#####”

string to avoid unnecessary results from the Check Differences Utility.

Batch Transform Utility

This script takes one input parameter <DIR1> and performs a transformation operation on each file in the
<DIR1> directory. Before running this script any previously existing files should be deleted form the
xOutFiles, xErrorFiles, and the xProcessedFiles directories. The script uses the $EAIDIR variable to
determine the location of the executable .jar files.

 Usage: codXformB.ksh <DIR1>

Parameters: <DIR1> - Relative path of a list of files to be transformed.

Expected Results: The files in the directory <DIR1> (normally the ‘xDataFiles’ directory) will be

transformed by the transformation application and deleted. The results of the
transformation will be in the xOutFiles and/or the xErrorFiles directories.

Script Location: <home directory>/transform

Transform Script

This script takes one input parameter < pre-xform data filename > and performs a transformation
operation on each file in the < pre-xform data filename > directory. Before running this script any
previously existing files should be deleted form the xOutFiles, xErrorFiles and the xProcessedFiles
directories. The script uses the $EAIDIR variable to determine the location of the executable .jar files.

 Usage: codXformB.ksh < pre-xform data filename >

Parameters: < pre-xform data filename > - File name of the pre-transform XML file in the

xDataFiles directory.

Expected Results: The file < pre-xform data filename > in the xDataFiles directory will be

transformed by the transformation application and deleted. The results of the
transformation will be in the xOutFiles or the xErrorFiles directories.

Script Location: <home directory>/transform

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 24 of 27

Appendix F – Contacts
Name Contact Information Team Responsibilities
Debbie Miller NCS Pearson

Debbie_Miller@ncs.com
COD Owner of the following documents:

• COD Mapping Rules documents for Pell
and Direct Loans

• COD Bus Edit Business Rules for Pell and
Direct Loans

Bryan Van
Note

NCS Pearson
Bryan_Van_Note@ncs.com

COD Owner of the following documents:
• COD Mapping Rules documents for Pell

and Direct Loans
• COD Bus Edit Business Rules for Pell and

Direct Loans
Andrew
Smalera

andrew.smalera@accenture.com ITA COD Transformation architect/developer
• Developed the transformation program.
• Deep functional knowledge of COD

Theresa Pak theresa.pak@accenture.com

EAI COD Transformation developer/tester
• Understands the overall transformation

development and testing process
• Working knowledge of transformation

code
• Good understanding of configuration

files
Julie T. McNeil Julie.t.mcneil@accenture.com COD COD Transformation developer/tester

• Understands the overall transformation
development and testing process

• Working knowledge of transformation
code

• Good understanding of configuration
files

Lori J.
Clemmensen

Lori.j.clemmensen@accenture.com COD Good working knowledge of the following
documents:
• COD Mapping Rules documents for Pell

and Direct Loans
• COD Bus Edit Business Rules for Pell and

Direct Loans
• COD Technical Reference – one of the

authors
Scott Van
Velsor

fscott.van.velsor.jr@accenture.com

EAI EAI Configuration Management Lead
• Check-in/check out code/scripts
• Deploy new EAI builds

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 25 of 27

Appendix F – Lessons Learned
This section provides the transformation developers/testers with a list of “gotchas” from previous developers.
The best practices and general guidelines for transformation maintenance and enhancements are documented in
this section for future reference and further development. This section will continue to expand as more
requirements are implemented. It is each developer’s responsibility to keep this list up-to-date with the current
findings.

Problems/Issues Potential Problem
The award block is missing in the
post transform legacy flat file

• Misspelling of the Award block common record tag (.e.g, instead of
DLPLUS, it is misspelled DPLUS)

• Invalid configuration file is specified in the ResponseTemplate.xml for the
message type and batch type.

<!-- <ERRORTEXT>

null
</ERRORTEXT>

This error text is written to the post transform response file when an invalid
batch or specific edits configuration file is specified in the data mapping
configuration files. Verify that the edits configuration exists and that it is
spelled correctly.

Edit codes not translated in post
transform response.

• Misspelling of the edits block <EditProcessResult>
• Edit code returned in a different block than specified in the edits

configuration file
• The edit code translation is not specified in the configuration file

Legacy record data field not
translated in pos transform
response

• Misspelling of the tag names
• Data field returned in a different block than specified in the

configuration file

Direct Loan Change edit code not
translated in post transform
response

The DL change edit codes are translated only when the following
requirements are met:
• Direct Loan Change tag in the DL change acknowledge record
• Edit code associated with the DL change tag
• Direct Loan change tag within the edits block
Example:
..
..
<Student SSN="500320442" BirthDate="1962-03-20" LastName="COPPER">
 <Identifiers>
 <SSN>123456789</SSN>
 </Identifiers>
 <DLPLUS>
 <FinancialAwardID>500320442S03G02868001</FinancialAwardID>
 </DLPLUS>
 <Response>
 <ResponseCode>R</ResponseCode>
 <EditProcessResult>
 <ResponseErrorCode>016</ResponseErrorCode>
 <ResponseErrorField>SSN</ResponseErrorField>
 </EditProcessResult>
 </Response>
…

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 26 of 27

Appendix G – EAI Mapping Document Guide
 During Unit Testing of release 2.0 of the COD Transformation code, mapping documents were created for
each transformed message class. The purpose of the mapping documents is to provide a clear representation of
how the data contained in the legacy flat files is related to the data contained in the COD XML output files. The
documents contain related legacy and XML file information side by side for each field in the legacy flat file.

Legacy File Layouts Common Record Layout
Legacy Block Start End Length Type Field

Name
Field
Description

Valid
Values

Justify Pad No
Value
Pad

Type Record Block Data
Source

Cache
Data
Source

Translation
Rules

Formatting
Rules

The legacy portion of the document contains the following information:

 Legacy Block
o Indicates which row of data in the Legacy flat file contains this particular field. This value may

be either the SAIG Header or trailer, the Batch Header of trailer, or one of the main data rows.
 Start

o Indicates the first character number of the flat file field.
 End

o Indicates the last character number of the flat file field.
 Length

o Indicates the total number of characters in the legacy flat file that are reserved for the use of this
field.

 Type
o Indicates the type of data in the field, ‘A’ for alpha. ‘N’ for numeric, ‘A/N’ for alphanumeric or

‘N/A’ for not applicable.
 Field Name

o The name of the particular field in the flat file layout.
 Field Description

o When applicable, a brief description of the field and /or any additional comments about its use.
 Valid Values

o As accurate of a description as possible of the values that are valid for the legacy flat file layout.
The description may be a single value for static fields or a set of rules that can be applied to a
generated value.

 Justify
o Describes the justification of the legacy flat file field, may be ‘none’ (the transformation defaults

to left), ‘left’, or ‘right’. This parameter is used by the Transformation code to place values into
fields when the value is shorter than the field length.

 Pad
o Defines how the Transformation will pad the extra characters in a legacy flat file field when the

value from the common record id shorter than the field. Valid values include ‘spaces’ (usually
used for alpha or alphanumeric fields), ‘zeros’ (usually used for numerical fields), ‘none’ (tell the
transformation code to fail with an error when a this field is shorter than the required length), or
the pad value may be a single character, i.e. placing a value of ‘z’ in the Pad field will pad the
value of the field with the appropriate number of ‘z’ characters.

 No Value Pad

Enterprise Application Integration
COD Transformation Internal Design Document

 Internal Design Document
SAIG_COD_MSG_TRANSFORM_IDD

Page 27 of 27

o Defines how the Transformation will pad the characters of the legacy flat file field when no value
was defined in the XML common record. This pad value is only used when the corresponding
XML tag did NOT appear in the XML common record. If the tag did appear in the XML common
record (even with no value inside the tag) then the Transformation code will pad using the Pad
parameter and ignore the No Value Pad parameter.

The common record portion of the document contains the following information:

 Type
o Can be one of several values,
o ‘static’ - meaning that the value to be placed into the legacy flat file field is hard coded in the

configuration file and is independent of the XML produced by COD.
o ‘ref’ – meaning that the value to be placed into the legacy flat file field should have been cached

as one of the cached fields by the transformation code. These values are often used in several
places in the legacy flat file, or are used in headers or trailers.

o ‘node’ – meaning that the value to be placed into the legacy flat file field will be read from the
XML common record when it is reached. These values are often used only once per data line in
the legacy flat file and their values often differ from line to line.

o ‘batch edit’ or ‘specific edit’ – meaning that the configuration file contains the value ‘EDITCODE’
and that the value to be placed into the legacy flat file is a translation of a values contained in the
XML common record field. The translation rules are contained in separate batch or specific edit
configuration files that are distinct from the mail configuration file for the message class.

 Record Block
o Indicates the general block within the XML common record that contains the tag from which the

XML common record value is read. This values should be blank for and fields with a type of
‘static’

 Data Source
o For fields of Type ‘static’ – this value is the literal value (or exact description of the value) that

will be placed in the legacy flat file.
o For fields of Types ‘node’ or ‘ref’ – indicated the name of the XML tag that contains the value of

the field. Any block names or tag names are relative to the general path given in the Record
Block column.

o For fields of Type ‘static’, ‘batch edit’ or ‘specific edit’ – This column is N/A
 Cache Data Source

o For fields of Type ‘ref’ – refers to the internal Transformation name of the cached value for a
particular field. These values have already been read from the XML common record during a
previous scan and have been saved by the Transformation code.

o For all other field Types – This column is N/A
 Translation Rules

o Where applicable this field contains specific details of how a particular field is translated from its
XML common record format to its legacy flat file format.

 Formatting Rules
o Where applicable this field indicated the formatting code contained in the configuration file.

Each formatting code refers to a specific formatting function that will perform certain formatting
operations, i.e. removing of dashes from XML common record date value.

